РАЗРАБОТКА И ОЦЕНКА АНТИГЕННОЙ АКТИВНОСТИ ВАКЦИНЫ ПРОТИВ ВИРУСНОЙ ЛЕЙКЕМИИ КОШЕК

Paeв C.A.¹, Rob van Herwijnen², Мухин А.Н.³, Непоклонова И.В.⁴,

Орлянкин Б.Г.⁴, Алипер Т.И.³, Непоклонов Е.А.¹

- ¹ Московский государственный университет прикладной биотехнологии
 - ² Европейская ветеринарная лаборатория (Нидерланды)
 - ³ ЗАО «НПО НАРВАК»
- ⁴ АНО «Научно-исследовательский институт диагностики и профилактики болезней человека и животных»

Введение

Вирус лейкемии кошек (Feline leukaemia virus, FeLVили ВЛК) – РНК-содержащий вирус семейства Retroviridae, является одним из наиболее распространенных возбудителей инфекционных заболеваний кошек. В США, где уже 20 лет действует система по обнаружению и изоляции больных кошек, а также вакцинации, распространенность данного заболевания среди клинически здоровых животных составляет 2%, в то время как среди больных особей и кошек, принадлежащих к группе риска (к этой группе принадлежат те животные, которые могут вступать в контакт с инфицированными кошками) эта цифра варьирует от 6 до 33% (1). Основной путь передачи вируса – горизонтальный, также возможно трансплацентарное инфицирование плода. В организме животных вирус вызывает дегенеративные, пролиферативные, а также неопластические процессы в клетках гемопоэтического ряда. персистентно инфицированных кошек это может приводить к лейкемии, фибросаркомам или, чаще всего, к супрессии иммунной системы животного, на фоне которой проявляются оппортунистические инфекции (2).

Основным методом контроля за распространением инфекции, вызываемой ВЛК, является выявление и изоляция инфицированных кошек (3), а также профилактическая вакцинация. Вакцинированные кошки, у которых происходит синтез вируснейтрализующих антител к

поверхностному гликопротеину ВЛК подгруппы A gp70, устойчивы к заражению вирулентным штаммом вируса (4).

За рубежом для специфической профилактики вирусной лейкемии кошек разработано несколько видов вакцин, причем наибольшей культуральная эффективностью обладают инактивированная рекомбинантная субъеденичная вакцины (5-13). Успешное применение таких вакцин за рубежом, а также отсутствие аналогичных препаратов производства, стало основанием разработки отечественного для культуральной инактивированной вакцины против вирусной лейкемии кошек, что и явилось целью данной работы.

Материалы и методы

В качестве источника вируса лейкемии кошек использовали суспензионную перевиваемую культуру клеток лимфомы кошки F422, хронически инфицированную ВЛК подгруппы A Rickard (14). Клетки выращивали на пластиковых флаконах в среде RPMI1640 с 10% фетальной сыворотки крупного рогатого скота и добавлением 100 ЕД пенициллина и 100 µдстрептомицина на 1см³ среды. На 3-и сутки культивирования, при достижении концентрации клеток 6-7х10⁵ клеток/см³ флаконы однократно замораживали-оттаивали, чего остатки клеток после центрифугированием в течение 15 минут при 3 тыс. а культуральную жидкость использовали в дальнейшей работе. Наличие культуральной жидкости ВЛК определяли иммуноферментным метолом (ИФА) помошью системы Feline leukaemiavirus antigen ELISA (Biologicals Ltd, Нидерланды). Постановку ИФА, учет и интерпретацию результатов реакции проводили согласно инструкции производителя.

Для инактивации вируса к культуральному антигену добавляли 0,3% от конечного объема 40% раствора формальдегида. Полученную смесь инкубировали 24 часа при 37°C, после чего в смесь добавляли тиосульфат натрия из расчета 0,25 см³ 19% раствора на 10 мл вируссодержащей суспензии.

приготовления опытной серии вакцины использовали предварительно инактивированную культуральную жидкость, концентрации содержащую суспензию клеток В $6x10^5$ клеток/см³, с титром в ИФА не менее 1:32. Антиген смешивали с одним из адъювантов: 6% гидроксидом алюминия гель Montanide Gel (Seppic, Франция) до конечной концентрации 10 и 20% от общего объема вакцины соответственно. Полученные препараты смешивали на аппарате Vortex в течение 10 минут и инкубировали 18 часов при 4°C.

Антигенную активность вакцины проверяли на клинически здоровых беспородных котятах 8-20 недельного возраста, которым испытуемый препарат вводили двукратно с интервалом 21 сутки в дозе 1 см³. Опытные животные были разбиты на три группы, котятам 1-ой группы внутримышечно вводили вакцину, в которой в качестве адъюванта использовали ГОА. Животным 2-ой и 3-й групп вводили вакцину, в которой в качестве адъюванта использовали гель Montanide Gel, в первом случае котят прививали подкожно, во втором – внутримышечно. Котят контрольной (4-й) группы не вакцинировали.

У всех опытных и контрольных животных до вакцинации, на 21-е и 42-е сутки после вакцинации отбирали пробы крови для анализа. Сыворотку крови исследовали на наличие матриксного белка р27 ВЛК в твердофазном ИФА с помощью тест-системы Felineleukaemia virus-р27 antigen ELISA (Biologicals Ltd., Нидерланды), а также на наличие антител к gp70 ВЛК с помощью тест-системы Feline leukaemia virus gp70antibody ELISA этого же производителя. Постановку ИФА, учет и интерпретацию результатов реакции проводили согласно прилагаемых инструкций.

Цельную кровь котят использовали для выделения ВЛК в перевиваемой культуре клеток почки кошки (CRFK). Для этого суспензию перевиваемой культуры клеток CRFK с концентрацией $2x10^5$ клеток/см³ вносили в 24-луночные культуральный планшеты в объеме 0,5 см³. Инкубировали 24 часа при 37°C после чего в лунку добавляли 0,005 см³ образца крови. После инкубации в течение 2 часов при 37°C лунка освобождалась от образца крови и в нее добавляли поддерживающую среду. Планшет инкубировали 7 дней (37°C, 5% CO₂). По истечении этого срока супернатант исследовали на наличие антигена р27 ВЛК в ИФА.

На протяжении всего эксперимента велось наблюдение за клиническим состоянием опытных и контрольных животных.

Результаты исследований

Результаты по оценке антигенной активности приготовленных экспериментальных вакцин против вирусной лейкемии кошек, представлены в таблице.

Анализ полученных результатов свидетельствует о том, что у всех вакцинированных животных наблюдалась выраженная сероконверсия, а уровень антител к gp70 ВЛК через 3 недели после 2-ой вакцинации составил от 1:100 до 1:810. При этом максимальный уровень иммунного ответа (средний геометрический титр антител по группе 1:720) установлен у животных иммунизированных внутримышечно вакциной, в которой в качестве адъюванта использовали Montanide Gel. У котят, которым аналогичную вакцину вводили подкожно, уровень антител был ниже, и в среднем составил 1:573. Минимальный титр антител (1:242) был зарегистрирован в 1-й группе опытных животных привитых вакциной с использованием ГОА в качестве адъюванта.

Известно, что протективный титр антител, определяемый в ИФА, при экспериментальном заражении кошек вирулентным штаммом Glasgow-1 ВЛК равен 1:256, а в случаях длительного контакта здоровых кошек с ВЛК-инфицированными - 1:100 (18). Следовательно, большинство

Результаты по выявлению антител к др70 ВЛК у кошек

№ группы	№ животного	Адьювант	Способ введения	Титр антител к др70 ВЛК		
				0 сутки	21 сутки	42 сутки
1	1	ГОА	внутримышечно	1:10	1:270	1:270
	2	1		1:30	1:270	1:270
	3			<1:10	1:270	1:270
	4			<1:10	1:270	1:270
	5			<1:10	1:30	1:270
	6			1:30	1:90	1:100
	7			1:10	1:270	1:270
	8			1:30	1:270	1:270
	9			<1:10	1:270	1:270
	10			<1:10	1:270	1:270
	11			<1:10	1:30	1:270
	12			1:30	1:90	1:100
	Сред	ний геометрич	еский титр	1:12	1:200	1:242
2	1	MontanideGel	подкожно	<1:10	1:270	1:810
	2			<1:10	1:270	1:810
	3			1:10	1:270	1:810
	4			1:10	1:30	1:100
	5			<1:10	1:270	1:810
	6			<1:10	1:30	1:100
	7			<1:10	1:270	1:810
	8			<1:10	1:270	1:810
	9			1:10	1:270	1:810
	10			1:10	1:30	1:100
	11			<1:10	1:270	1:810
	12			<1:10	<1:30	1:100
	Сред	Средний геометрический титр			1:190	1:573
3	1	MontanideGel	внутримышечно	1:10	1:270	1:810
	2			1:30	1:270	1:810
	3			<1:10	1:270	1:810
	4			<1:10	1:90	1:810
	5			<1:10	1:270	1:270
	6			1:10	1:270	1:810
	7			1:30	1:270	1:810
	8			<1:10	1:270	1:810
	9			<1:10	1:90	1:810
	10			<1:10	1:270	1:270
	11			<1:10	1:270	1:810
	12			<1:10	1:90	1:810
	Средний геометрический титр				1:225	1:720

4	1		<1:10	<1:10	<1:10
	2		<1:10	<1:10	<1:10
	3		1:10	1:10	1:10
	4		<1:10	<1:10	<1:10

вакцинированных нами животных (более 83%) способно противостоять контрольному заражению вирулентным ВЛК и все они будут защищены от инфицирования при контакте с больными кошками.

Таким образом, различия в уровне иммунного ответа у животных, вакцинированных экспериментальными препаратами с разными типами адъювантов, свидетельствует о важности выбора адъюванта разработке инактивированной вакцины против вирусной лейкемии кошек. Так в работах зарубежных исследователей было показано, что выбор адъюванта играет ключевую роль в подобной вакцине, поскольку в ряде случаев, поствакцинальный иммунный ответ у животных после введения препарата недостаточен (12, 16, 17). Результаты, полученные в ходе показали, что использование Montanide Gel в эксперимента, качестве адъюванта в вакцине предпочтительнее ГОА, поскольку при внутримышечном введении данный препарат обеспечивает выработку ВЛК в количестве антител к др70 значительно превышающим протективный показатель у 100% привитых котят.

Известно, что выявление в крови кошек матриксного белка р27 ВЛК свидетельствует о наличии виремии у животных (3). При оценке антигенной активности испытуемой вакцины нами не был выявлен антиген р27 ВЛК в сыворотке крови всех опытных и контрольных котят в течение всего периода наблюдения. Также нам не удалось выделить ВЛК в культуре клеток из цельной крови вакцинированных и контрольных котят. Исходя из полученных данных, был сделан вывод о том, что разработанные нами экспериментальные вакцины против вирусной лейкемии кошек не способны инфицировать животных или вызвать реактивацию латентной инфекции.

Ежедневные клинические обследования опытных и контрольных котят не выявили у животных отклонений в состоянии здоровья и побочных эффектов. Все животные сохраняли нормальные поведенческие реакции, не наблюдалось снижения аппетита и появления угнетенности, что свидетельствует о том, что разработанная нами экспериментальная вакцина против вирусной лейкемии кошек является безвредной и ареактогенной.

Заключение

Полученные результаты свидетельствуют о том, что, разработанная вирусной лейкемии против кошек нами инактивированного ВЛК подгруппы A Rickard обладает выраженной антигенной активностью и являюеся безвредной и ареактогенной. При этом протективный уровень вирус- специфических антител у привитых животных достигается при двукратном внутримышечном введении препарата, котором В качестве адъюванта используется гельMontanide Gel.

Список использованной литературы

- 1. Levy J., et al. //Journal of Feline Medicine and surgery. 2008. 10. 300.
- 2. Hardy W.D. //Feline leukemia virus. 1980. 33.
- 3. Hartmann C. //Infectious diseases of the dog and cat. 2006. 105.
- 4. Russell P.H., Jarrett O. //Int. J. Cancer. 1978. 22. 351.
- 5. Sparkes A.H. //J Feline Med Surg. 2003. 5. 97.
- 6. Sparkes A.H. //J. Small. Anim. Pract. 1997. 38. 187.
- 7. Jarrett O., Ganiere J.P. //Vet. Rec. 1996. 138. 7.
- 8. Hines D.L., et al. //J. Am. Vet. Med. Assoc. 1991. 199. 1428.
- 9. Hoover E.A., et al. //J. Am. Vet. Med. Assoc. 1991. 199. 1392.
- 10. York S.M., York C.J. //J. Am. Vet. Med. Assoc. 1991. 199. 1419.
- 11. Tizard I., Bass E.P. //J. Am. Vet. Med. Assoc. 1991. 199. 1410.
- 12. Marciani D.J., et al. //Vaccine. 1991. 9. 89.
- 13. Poulet H., et al. //Vet. Rec. 2003. 153. 141.
- 14. Rickard C.G., et al. //J. Natl. Cancer Inst. 1969. 42. 987.
- 15. Russell P.H., Jarrett O. //Int. J. Cancer. 1978. 21. 768.
- 16. Usinger W.R. //Vaccine 1997. 15. 1902.

- 17. Kensil C.R., et al. //J. Am. Vet. Med. Assoc. 1991. 199. 1423.
- 18. Jarrett O., et al. //Vet. Rec. 1977. 101. 304.